- 1. Introduction
❱
- 1.1. Cargo 101
- 2. 1D Ridge regression 🦀
❱
- 2.1. Functional
❱
- 2.1.1. Loss function
- 2.1.2. Closed-form solution
- 2.1.3. Gradient descent
- 2.1.4. Putting things together
- 2.1.5. Exposing API
- 2.2. Structured
❱
- 2.2.1. Closed-form solution
- 2.2.2. Gradient descent
- 2.2.3. Trait Ridge model
- 2.3. Generics
❱
- 2.3.1. Generics & trait bounds
- 2.3.2. Closed-form solution
- 2.4. Option, errors, ndarray
❱
- 2.4.1. Improved constructor
- 2.4.2. Fit function
- 2.4.3. Predict function
- 2.4.4. Error handling
- 2.4.5. Implementing tests
- 3. Simple optimizers 🦀🦀
❱
- 3.1. Trait-based
❱
- 3.1.1. Gradient descent
- 3.1.2. GD with momentum
- 3.1.3. API and usage
- 3.1.4. Tests
- 3.2. Enum-based
❱
- 3.2.1. Constructors
- 3.2.2. Step functions
- 3.2.3. API and usage
- 3.2.4. Tests
- 3.3. Using ndarray
❱
- 3.3.1. Gradient descent
- 3.3.2. Momentum GD
- 3.3.3. Nesterov AG
- 3.3.4. API and usage
- 3.3.5. Tests
- 4. Kernel Ridge regression 🦀🦀
❱
- 4.1. Kernel module
- 4.2. Gram matrix
- 4.3. KRR model
- 4.4. Fit function
- 4.5. Predict function
- 4.6. Hyperparameter tuning
- 5. 2D Poisson FEM solver 🦀🦀
❱
- 5.1. User interface
- 5.2. Mesh module
- 5.3. Element module
- 5.4. Quadrature module
- 5.5. Solver module